Question:

Evaluate \( \csc(90^\circ - \theta) \cdot \cos(90^\circ - \theta) \):

Show Hint

Using complementary angle identities: \[ \sin(90^\circ - \theta) = \cos \theta, \quad \cos(90^\circ - \theta) = \sin \theta. \] \[ \csc(90^\circ - \theta) = \sec \theta, \quad \sec(90^\circ - \theta) = \csc \theta. \]
Updated On: Oct 27, 2025
  • \( \sec \theta \)
  • \( \tan \theta \)
  • \( \sin \theta \)
  • \( \cot \theta \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Using trigonometric identities:
\[ \csc(90^\circ - \theta) = \sec \theta, \quad \cos(90^\circ - \theta) = \sin \theta. \] \[ \csc(90^\circ - \theta) \cdot \cos(90^\circ - \theta) = \sec \theta \cdot \sin \theta. \] Using \( \sec \theta = \frac{1}{\cos \theta} \): \[ \frac{1}{\cos \theta} \times \sin \theta = \frac{\sin \theta}{\cos \theta} = \tan \theta. \] Thus, the correct answer is:
\[ \tan \theta. \]
Was this answer helpful?
0
0

Questions Asked in Bihar Class X Board exam

View More Questions