For a non-rigid diatomic molecule, the degrees of freedom \( f \) are given by:
\[f = 5 + 2(3N - 5)\]
Since \( N = 2 \) (for diatomic molecules):
\[f = 5 + 2(3 \times 2 - 5) = 7\]
The energy of one molecule is:
\[\text{Energy} = \frac{f}{2} k_B T = \frac{7}{2} k_B T\]
For 10 molecules, the total energy is:
\[10 \times \frac{7}{2} k_B T = 35 k_B T\]
Choose the correct set of reagents for the following conversion:
A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):