To solve this problem, we apply the concept of energy level transitions in the Bohr model of the atom. When an electron transitions between energy levels, it emits or absorbs radiation. The wavelength of the radiation is related to the energy difference between the initial and final states by the equation:
\(E = \dfrac{hc}{\lambda}\)
where:
Given:
We need to find the wavelength of the radiation emitted during the transition from state A to state B, denoted as \(\lambda_{AB}\).
To find this, we use the relationship between these wavelengths implied by Bohr's model:
Now, substituting the known wavelengths into the energy relations gives:
Thus, the energy difference for the transition from A to B is:
\(E_{AB} = \dfrac{hc}{2000 \text{ Å}} - \dfrac{hc}{6000 \text{ Å}}\)
Combining these terms gives us:
\(E_{AB} = hc \left(\dfrac{1}{2000} - \dfrac{1}{6000}\right)\)
Finding a common denominator:
\(E_{AB} = hc \left(\dfrac{3-1}{6000}\right) = hc \left(\dfrac{2}{6000}\right) = \dfrac{hc}{3000 \text{ Å}}\)
Thus, \(\lambda_{AB} = 3000 \text{ Å}\), which means the correct option is 3000 Å.
Step 1: Use the Rydberg formula. The energy of a photon emitted during a transition is inversely proportional to the wavelength.
Let $\lambda_{AC}$ be the wavelength for A to C, $\lambda_{BC}$ be the wavelength for B to C, and $\lambda_{AB}$ be the wavelength for A to B. Then, the energy relationships are: \[ \frac{1}{\lambda_{AC}} = \frac{1}{\lambda_{AB}} + \frac{1}{\lambda_{BC}} \] Step 2: Substitute the given values. We have $\lambda_{AC} = 2000$ Å and $\lambda_{BC} = 6000$ Å. We want to find $\lambda_{AB}$. \[ \frac{1}{2000} = \frac{1}{\lambda_{AB}} + \frac{1}{6000} \] Step 3: Solve for $\lambda_{AB}$. \[ \frac{1}{\lambda_{AB}} = \frac{1}{2000} - \frac{1}{6000} = \frac{3}{6000} - \frac{1}{6000} = \frac{2}{6000} = \frac{1}{3000} \] \[ \lambda_{AB} = 3000 { Å} \] Therefore, the wavelength of the radiation emitted during the transition of electrons from state A to state B is 3000 Å. The correct answer is (1).
Consider the following statements:
A. The junction area of a solar cell is made very narrow compared to a photodiode.
B. Solar cells are not connected with any external bias.
C. LED is made of lightly doped p-n junction.
D. Increase of forward current results in a continuous increase in LED light intensity.
E. LEDs have to be connected in forward bias for emission of light.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: