Step 1: Use the Rydberg formula. The energy of a photon emitted during a transition is inversely proportional to the wavelength.
Let $\lambda_{AC}$ be the wavelength for A to C, $\lambda_{BC}$ be the wavelength for B to C, and $\lambda_{AB}$ be the wavelength for A to B. Then, the energy relationships are: \[ \frac{1}{\lambda_{AC}} = \frac{1}{\lambda_{AB}} + \frac{1}{\lambda_{BC}} \] Step 2: Substitute the given values. We have $\lambda_{AC} = 2000$ Å and $\lambda_{BC} = 6000$ Å. We want to find $\lambda_{AB}$. \[ \frac{1}{2000} = \frac{1}{\lambda_{AB}} + \frac{1}{6000} \] Step 3: Solve for $\lambda_{AB}$. \[ \frac{1}{\lambda_{AB}} = \frac{1}{2000} - \frac{1}{6000} = \frac{3}{6000} - \frac{1}{6000} = \frac{2}{6000} = \frac{1}{3000} \] \[ \lambda_{AB} = 3000 { Å} \] Therefore, the wavelength of the radiation emitted during the transition of electrons from state A to state B is 3000 Å. The correct answer is (1).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: