Given:
- Original least count = \( 0.01 \, \text{mm} \) - The pitch is increased by 75% (new pitch = \( 1.75 \times \text{original pitch} \)) - The number of divisions on the circular scale is reduced by 50% (new divisions = \( \frac{1}{2} \) of the original divisions)
The least count \( LC \) of a screw gauge is given by: \[ LC = \frac{\text{Pitch}}{\text{Number of divisions on the circular scale}}. \]
The new pitch is \( P_{\text{new}} = 1.75 \times P \), and the new number of divisions is \( N_{\text{new}} = \frac{N}{2} \). Hence, the new least count is: \[ LC_{\text{new}} = \frac{1.75 \times P \times 2}{N} = 3.5 \times LC_{\text{original}}. \]
Substituting \( LC_{\text{original}} = 0.01 \, \text{mm} \), we get: \[ LC_{\text{new}} = 3.5 \times 0.01 = 0.035 \, \text{mm}. \]
The new least count is \( \boxed{0.035 \, \text{mm}} \).
Consider the following statements:
A. The junction area of a solar cell is made very narrow compared to a photodiode.
B. Solar cells are not connected with any external bias.
C. LED is made of lightly doped p-n junction.
D. Increase of forward current results in a continuous increase in LED light intensity.
E. LEDs have to be connected in forward bias for emission of light.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: