Step 1: Decompose the forces acting on the car
- The vertical force balance gives: \[ N \cos \theta + \mu N \sin \theta = mg \] - The horizontal force balance gives: \[ N \sin \theta - \mu N \cos \theta = \frac{mv_0^2}{r} \]
From the vertical force balance equation: \[ N = \frac{mg}{\cos \theta + \mu \sin \theta} \] Substitute this into the horizontal force balance equation: \[ \frac{mg}{\cos \theta + \mu \sin \theta} \sin \theta - \mu \frac{mg}{\cos \theta + \mu \sin \theta} \cos \theta = \frac{mv_0^2}{r} \] Simplifying the equation, we get the final expression for \( \mu \): \[ \mu = \frac{v_0^2 - rg \tan \theta}{rg + v_0^2 \tan \theta} \]
The correct expression for the coefficient of friction is \( \boxed{\frac{v_0^2 - rg \tan \theta}{rg + v_0^2 \tan \theta}} \), which corresponds to option (3).