Step 1: Decompose the forces acting on the car
- The vertical force balance gives: \[ N \cos \theta + \mu N \sin \theta = mg \] - The horizontal force balance gives: \[ N \sin \theta - \mu N \cos \theta = \frac{mv_0^2}{r} \]
From the vertical force balance equation: \[ N = \frac{mg}{\cos \theta + \mu \sin \theta} \] Substitute this into the horizontal force balance equation: \[ \frac{mg}{\cos \theta + \mu \sin \theta} \sin \theta - \mu \frac{mg}{\cos \theta + \mu \sin \theta} \cos \theta = \frac{mv_0^2}{r} \] Simplifying the equation, we get the final expression for \( \mu \): \[ \mu = \frac{v_0^2 - rg \tan \theta}{rg + v_0^2 \tan \theta} \]
The correct expression for the coefficient of friction is \( \boxed{\frac{v_0^2 - rg \tan \theta}{rg + v_0^2 \tan \theta}} \), which corresponds to option (3).
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: