For a plano-convex lens, the lensmaker’s formula is: \[ \frac{1}{f} = (\mu - 1) \left( \frac{1}{R} \right) \]
Step 1: For the first lens in air: \[ \frac{1}{f_1} = \left( \frac{\mu_1}{n_{{air}}} - 1 \right) \frac{1}{R_1} \] Given that \( \mu_1 = 1.5 \), \( n_{{air}} = 1.0 \), and \( R_1 = 2 \, {cm} \): \[ \frac{1}{f_1} = \left( \frac{1.5}{1} - 1 \right) \frac{1}{2} = \frac{0.5}{2} = \frac{1}{4} \] So, \( f_1 = 4 \, {cm} \).
Step 2: For the second lens in a liquid: \[ \frac{1}{f_2} = \left( \frac{\mu_2}{n_{{liquid}}} - 1 \right) \frac{1}{R_2} \] Given that \( \mu_2 = 1.5 \), \( n_{{liquid}} = 1.2 \), and \( R_2 = 3 \, {cm} \): \[ \frac{1}{f_2} = \left( \frac{1.5}{1.2} - 1 \right) \frac{1}{3} = \frac{0.25}{3} = \frac{1}{12} \] So, \( f_2 = 12 \, {cm} \).
Step 3: Finding the ratio of focal lengths: \[ \frac{f_1}{f_2} = \frac{4}{12} = \frac{1}{3} \] Thus, the correct ratio is \( 1 : 3 \).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: