For a plano-convex lens, the lensmaker’s formula is: \[ \frac{1}{f} = (\mu - 1) \left( \frac{1}{R} \right) \] Step 1: For the first lens in air: \[ \frac{1}{f_1} = \left( \frac{\mu_1}{n_{{air}}} - 1 \right) \frac{1}{R_1} \] Given that \( \mu_1 = 1.5 \), \( n_{{air}} = 1.0 \), and \( R_1 = 2 \, {cm} \): \[ \frac{1}{f_1} = \left( \frac{1.5}{1} - 1 \right) \frac{1}{2} = \frac{0.5}{2} = \frac{1}{4} \] So, \( f_1 = 4 \, {cm} \).
Step 2: For the second lens in a liquid: \[ \frac{1}{f_2} = \left( \frac{\mu_2}{n_{{liquid}}} - 1 \right) \frac{1}{R_2} \] Given that \( \mu_2 = 1.5 \), \( n_{{liquid}} = 1.2 \), and \( R_2 = 3 \, {cm} \): \[ \frac{1}{f_2} = \left( \frac{1.5}{1.2} - 1 \right) \frac{1}{3} = \frac{0.25}{3} = \frac{1}{12} \] So, \( f_2 = 12 \, {cm} \).
Step 3: Finding the ratio of focal lengths: \[ \frac{f_1}{f_2} = \frac{4}{12} = \frac{1}{3} \] Thus, the correct ratio is \( 1 : 3 \).
Consider the following statements:
A. The junction area of a solar cell is made very narrow compared to a photodiode.
B. Solar cells are not connected with any external bias.
C. LED is made of lightly doped p-n junction.
D. Increase of forward current results in a continuous increase in LED light intensity.
E. LEDs have to be connected in forward bias for emission of light.