Designate whether each of the following compounds is aromatic or not aromatic.
Aromatic compounds (follow Huckel's rule):
(a) Cyclic, planar, conjugated with 6$\pi$ electrons (4n+2 where n=1)
(c) Cyclic, planar, conjugated with 6$\pi$ electrons
(d) Cyclic, planar, conjugated with 6$\pi$ electrons
(e) Cyclic, planar, conjugated with 6$\pi$ electrons
(h) Cyclic, planar, conjugated with 6$\pi$ electrons
Non-aromatic compounds:
(b) Not fully conjugated (sp$^3$ hybridized carbon breaks conjugation)
(f) Not planar (twisted structure prevents conjugation)
(g) Has 4$\pi$ electrons (doesn't satisfy 4n+2 rule)
Conc. HNO\(_3\)
Find the IUPAC name of the compound.
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Resonance in X$_2$Y can be represented as
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is: