Conc. HNO\(_3\)
When phenol reacts with concentrated nitric acid (HNO₃), it undergoes nitration primarily at the ortho and para positions relative to the hydroxyl group (-OH). The electron-donating effect of the hydroxyl group activates the aromatic ring for electrophilic substitution, making the ring more reactive towards nitration.
The nitration of phenol with concentrated nitric acid produces **2,4,6-Trinitrophenol (picric acid)**, which is a highly reactive compound. The reaction can be represented as: \[ \text{C}_6\text{H}_5\text{OH} + 3\text{HNO}_3 \rightarrow \text{C}_6\text{H}_2(\text{NO}_2)_3\text{OH} + 3\text{H}_2\text{O} \]
The hydroxyl group on phenol is an electron-donating group that activates the benzene ring, making it more susceptible to electrophilic attack. During nitration, the nitronium ion (\( \text{NO}_2^+ \)) attacks the ortho and para positions of the phenol ring, resulting in the formation of **2,4,6-Trinitrophenol**, also known as **picric acid**.
The nitration of phenol with nitric acid results in the formation of **2,4,6-Trinitrophenol (picric acid)**, which is a highly reactive compound due to the electron-donating effect of the hydroxyl group. The major product is formed at the ortho and para positions relative to the hydroxyl group.
Designate whether each of the following compounds is aromatic or not aromatic.

The compound with molecular formula C\(_6\)H\(_6\), which gives only one monobromo derivative and takes up four moles of hydrogen per mole for complete hydrogenation has ___ \(\pi\) electrons.
Find the IUPAC name of the compound.

A battery of emf \( E \) and internal resistance \( r \) is connected to a rheostat. When a current of 2A is drawn from the battery, the potential difference across the rheostat is 5V. The potential difference becomes 4V when a current of 4A is drawn from the battery. Calculate the value of \( E \) and \( r \).
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is: