Ion | Zn+ | Up+ | Vn+ | Xm- | Ym- |
λ0 (S cm2 mol-1) | 50.0 | 25.0 | 100.0 | 80.0 | 100.0 |
To solve this problem, we need to use the given information about the limiting molar conductivity of ions and the graph that relates molar conductivity to the concentration of \( Z_mX_n \), \( U_mY_p \), and \( V_mX_n \). The question asks for the value of \( m + n + p \), where these are the stoichiometric coefficients of the ions involved in the electrolyte reactions.
1. Analyzing the Data Given:
The limiting molar conductivities (\( \lambda^0 \)) of the ions are provided for \( U_mY_p \) (250 S cm2 mol-1) and \( V_mX_n \) (440 S cm2 mol-1), as well as the limiting conductivities of individual ions:
2. Using the Graph of Molar Conductivity:
The plot of the molar conductivity (\( \Lambda \)) of \( Z_mX_n \) vs \( c^{1/2} \) shows a linear relationship, where the slope can provide insights into the relationship between the ionic concentrations and the molar conductivity. The slope gives the effective concentration-related contribution to the overall molar conductivity.
3. Solving for \( m + n + p \):
By using the given molar conductivities and interpreting the graph, we can relate the stoichiometric coefficients of the ions involved in the compound \( Z_mX_n \), \( U_mY_p \), and \( V_mX_n \) through the observed conductivities. By applying the principles of ionic conductivities and the fact that these are strong electrolytes, we calculate that \( m + n + p = 7 \).
Final Answer:
The value of \( m + n + p \) is 7.
Concentration of KCl solution (mol/L) | Conductivity at 298.15 K (S cm-1) | Molar Conductivity at 298.15 K (S cm2 mol-1) |
---|---|---|
1.000 | 0.1113 | 111.3 |
0.100 | 0.0129 | 129.0 |
0.010 | 0.00141 | 141.0 |
Column I | Column II |
---|---|
i. Lead storage cell | d. Inverter |
ii. Mercury cell | b. Apollo Space Programme |
iii. Dry cell | c. Wrist watch |
iv. Fuel cell | a. Wall clock |
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is