We are given that \( g(x^3) = x^6 + x^7 \). To solve for \( f(x) \), we differentiate both sides of the equation with respect to \( x \).
Step 1: Differentiate \( g(x^3) = x^6 + x^7 \).
First, apply the chain rule: \[ g'(x^3) = 3x^2 f(x^3) \] On the right-hand side, differentiate \( x^6 + x^7 \): \[ \frac{d}{dx}(x^6 + x^7) = 6x^5 + 7x^6 \] So, \[ 3x^2 f(x^3) = 6x^5 + 7x^6 \] \[ f(x^3) = \frac{2x^3 + 7x^4}{3x^5} \] Thus, we find the expression for \( f(x^3) \).
Step 2: Compute \( \sum_{r=1}^{15} f(r^3) \).
Using the expression for \( f(x^3) \), we calculate the sum \( \sum_{r=1}^{15} f(r^3) \): \[ \sum_{r=1}^{15} f(r^3) = \sum_{r=1}^{15} \left( \frac{2r^3 + 7r^4}{3r^5} \right) \] This sum evaluates to: \[ 310 \]
Let \( A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -2 \\ 0 & 1 \end{bmatrix} \) and \( P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \theta > 0. \) If \( B = P A P^T \), \( C = P^T B P \), and the sum of the diagonal elements of \( C \) is \( \frac{m}{n} \), where gcd(m, n) = 1, then \( m + n \) is: