Since \( f(x) \) is onto, the range of \( f(x) \) is \( A \).
Now, the derivative \( f'(x) = 6x^2 - 30x + 36 \), which factors as: \[ f'(x) = 6(x-2)(x-3) \]
Evaluating \( f(x) \) at various points:
\[ f(2) = 16 - 60 + 72 + 7 = 35, \quad f(3) = 54 - 135 + 108 + 7 = 34, \quad f(0) = 7 \]
Hence, the range of \( f(x) \) is \( [7, 35] \).
Now, for \( g(x) \), we have: \[ g(x) = \frac{1}{x^{2025} + 1}, \quad g(x) \in [0, 1] \]
Thus, the range of \( g(x) \) is \( [0, 1] \), and the set \( S = \{ 0, 7, 8, \ldots, 35 \} \). Therefore, the number of elements in \( S \) is 30.
Let \( A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -2 \\ 0 & 1 \end{bmatrix} \) and \( P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \theta > 0. \) If \( B = P A P^T \), \( C = P^T B P \), and the sum of the diagonal elements of \( C \) is \( \frac{m}{n} \), where gcd(m, n) = 1, then \( m + n \) is:
If $$ \int \frac{\left( \sqrt{1 + x^2} + x \right)^{10}}{\left( \sqrt{1 + x^2} - x \right)^9} \, dx = \frac{1}{m} \left( \left( \sqrt{1 + x^2} + x \right)^n \left( n\sqrt{1 + x^2} - x \right) \right) + C, $$ $\text{where } m, n \in \mathbb{N} \text{ and }$ $C \text{ is the constant of integration, then } m + n$ $\text{ is equal to:}$
Let $ f(x) + 2f\left( \frac{1}{x} \right) = x^2 + 5 $ and $ 2g(x) - 3g\left( \frac{1}{2} \right) = x, \, x>0. \, \text{If} \, \alpha = \int_{1}^{2} f(x) \, dx, \, \beta = \int_{1}^{2} g(x) \, dx, \text{ then the value of } 9\alpha + \beta \text{ is:}$
The center of a circle $ C $ is at the center of the ellipse $ E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $, where $ a>b $. Let $ C $ pass through the foci $ F_1 $ and $ F_2 $ of $ E $ such that the circle $ C $ and the ellipse $ E $ intersect at four points. Let $ P $ be one of these four points. If the area of the triangle $ PF_1F_2 $ is 30 and the length of the major axis of $ E $ is 17, then the distance between the foci of $ E $ is: