Consider the lines $L_1$ and $L_2$ given by
$L_1: \frac{x-1}{2}=\frac{y-3}{1}=\frac{z-2}{2} $
$L_2: \frac{x-2}{1}=\frac{y-2}{2}=\frac{z-3}{3} $
A line $L_3$ having direction ratios $1,-1,-2$, intersects $L_1$ and $L_2$ at the points $P$ and $Q$ respectively Then the length of line segment $P Q$ is
The correct answer is (C) : \(2\sqrt6\)
Let P = (2λ+1,λ+3,2λ+2)
Let Q = \((\mu+2,2\mu+2,3\mu+3)\)
\(⇒\frac{2λ-\mu-1}{1}=\frac{λ-2\mu-1}{-1}\)
\(=\frac{2λ-3\mu-1}{-2}⇒λ=\mu=3\)
\(⇒P(7,6,8)\) and \(Q(5,8,12)\)
PQ = \(2\sqrt6\)
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
If some other quantity ‘y’ causes some change in a quantity of surely ‘x’, in view of the fact that an equation of the form y = f(x) gets consistently pleased, i.e, ‘y’ is a function of ‘x’ then the rate of change of ‘y’ related to ‘x’ is to be given by
\(\frac{\triangle y}{\triangle x}=\frac{y_2-y_1}{x_2-x_1}\)
This is also known to be as the Average Rate of Change.
Consider y = f(x) be a differentiable function (whose derivative exists at all points in the domain) in an interval x = (a,b).
Read More: Application of Derivatives