Given: $ \Delta H_f^0 [C(graphite)] = 710 $ kJ mol⁻¹ $ \Delta_c H^0 = 414 $ kJ mol⁻¹ $ \Delta_{H-H}^0 = 436 $ kJ mol⁻¹ $ \Delta_{C-H}^0 = 611 $ kJ mol⁻¹
The \(\Delta H_{C=C}^0 \text{ for }CH_2=CH_2 \text{ is }\) _____\(\text{ kJ mol}^{-1} \text{ (nearest integer value)}\)
A piston of mass M is hung from a massless spring whose restoring force law goes as F = -kx, where k is the spring constant of appropriate dimension. The piston separates the vertical chamber into two parts, where the bottom part is filled with 'n' moles of an ideal gas. An external work is done on the gas isothermally (at a constant temperature T) with the help of a heating filament (with negligible volume) mounted in lower part of the chamber, so that the piston goes up from a height $ L_0 $ to $ L_1 $, the total energy delivered by the filament is (Assume spring to be in its natural length before heating)
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to