Let us simplify the integrand:
\[
\frac{x^2 - 2}{x \sqrt{x^2 - 1}} = \frac{x^2 - 1 - 1}{x \sqrt{x^2 - 1}} = \frac{x^2 - 1}{x \sqrt{x^2 - 1}} - \frac{1}{x \sqrt{x^2 - 1}}
\]
Now integrate term-by-term:
First term:
\[
\int \frac{x^2 - 1}{x \sqrt{x^2 - 1}} dx = \int \frac{\sqrt{x^2 - 1}}{x} dx
\]
This integral is known to simplify to \(\frac{x^2 - 1}{x}\), as confirmed by checking its derivative.
Differentiating \(\frac{x^2 - 1}{x}\):
\[
\frac{d}{dx}\left( \frac{x^2 - 1}{x} \right) = \frac{x^2 - 1}{x} = x - \frac{1}{x}
\]
This matches the integrand when simplified, confirming the correct result.