Check whether the matrix
is invertible or not.
Step 1: Calculate the Determinant
For a \( 2 \times 2 \) matrix A =
, the determinant is given by: \[ \det(A) = (a d - b c). \] Substituting the values from matrix \( A \): \[ \det(A) = (\cos\theta \cdot \cos\theta - \sin\theta \cdot (-\sin\theta)) \] \[ = \cos^2\theta + \sin^2\theta. \] Step 2: Check the Invertibility Condition
Since \( \cos^2\theta + \sin^2\theta = 1 \), we have: \[ \det(A) = 1 \neq 0. \] As the determinant is nonzero, the matrix is invertible.
Consider the matrix:
\[ A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \]
The eigenvalues of the matrix are 0.27 and ____ (rounded off to 2 decimal places).
The slope of the tangent to the curve \( x = \sin\theta \) and \( y = \cos 2\theta \) at \( \theta = \frac{\pi}{6} \) is ___________.
Solve the following L.P.P. by graphical method:
Maximize:
\[ z = 10x + 25y. \] Subject to: \[ 0 \leq x \leq 3, \quad 0 \leq y \leq 3, \quad x + y \leq 5. \]