Step 1: Calculate the Semi-Perimeter
The semi-perimeter \( s \) of the triangle is computed as:
\[
s = \frac{a + b + c}{2} = \frac{18 + 24 + 30}{2} = 36.
\]
Step 2: Apply the Half-Angle Formula for Sine
The half-angle formula for sine is:
\[
\sin \left(\frac{A}{2}\right) = \sqrt{\frac{(s - b)(s - c)}{b c}}.
\]
Step 3: Substituting the Given Values
Substitute the known values into the formula:
\[
\sin \left(\frac{A}{2}\right) = \sqrt{\frac{(36 - 24)(36 - 30)}{24 \times 30}}.
\]
\[
= \sqrt{\frac{12 \times 6}{720}} = \sqrt{\frac{72}{720}} = \sqrt{\frac{1}{10}}.
\]
\[
= \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10}.
\]