Given,
At t=0, the angular velocity \(\omega\) of the disk is 0
\(t=0, \omega=0\)
at \(t=\sqrt{\pi}, \omega=\alpha t=\frac{2}{3} \sqrt{\pi}\),
The linear velocity v of a point on the disk is given by \(v = \omega r\).
Substituting the given values we find, \(v=\omega r=\frac{2}{3} \sqrt{\pi}\)
Using the formula for angular displacement, \(\theta=\frac{1}{2} \alpha t^2\)
\(\theta=\frac{1}{2} \times \frac{2}{3} \times \pi=\frac{\pi}{3}\)
\(\theta=60^{\circ}\)
\(\begin{aligned} &\text{The vertical velocity component}\ v_y=v \sin 60=\frac{\sqrt{3}}{2} V \\ & h=\frac{u_y^2}{2 g}=\frac{\frac{3}{4} v^2}{2 g} \\ & h=\frac{\frac{3}{4} \times \frac{4}{9} \pi}{2 g} \\ & h=\frac{3 \pi}{9 \times 2 g}=\frac{\pi}{6 g} \end{aligned}\)
Total maximum height from the plane, \(H=\frac{R}{2}+h\)
Substituting \(h = \frac{\pi}{6g}\), where \(g = 10 \, \text{m/s}^2\)
\(\begin{aligned} & H=\frac{1}{2}+\frac{\pi}{6 \times 10} \\ & x=\frac{\pi}{6} ; x=0.52 \end{aligned}\)
So, the answer is 0.52
A uniform circular disc of radius \( R \) and mass \( M \) is rotating about an axis perpendicular to its plane and passing through its center. A small circular part of radius \( R/2 \) is removed from the original disc as shown in the figure. Find the moment of inertia of the remaining part of the original disc about the axis as given above.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
A solid glass sphere of refractive index $ n = \sqrt{3} $ and radius $ R $ contains a spherical air cavity of radius $ \dfrac{R}{2} $, as shown in the figure. A very thin glass layer is present at the point $ O $ so that the air cavity (refractive index $ n = 1 $) remains inside the glass sphere. An unpolarized, unidirectional and monochromatic light source $ S $ emits a light ray from a point inside the glass sphere towards the periphery of the glass sphere. If the light is reflected from the point $ O $ and is fully polarized, then the angle of incidence at the inner surface of the glass sphere is $ \theta $. The value of $ \sin \theta $ is ____
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____.
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.
The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a rigid body.
Other examples: