
Given,
At t=0, the angular velocity \(\omega\) of the disk is 0
\(t=0, \omega=0\)
at \(t=\sqrt{\pi}, \omega=\alpha t=\frac{2}{3} \sqrt{\pi}\),
The linear velocity v of a point on the disk is given by \(v = \omega r\).
Substituting the given values we find, \(v=\omega r=\frac{2}{3} \sqrt{\pi}\)
Using the formula for angular displacement, \(\theta=\frac{1}{2} \alpha t^2\)
\(\theta=\frac{1}{2} \times \frac{2}{3} \times \pi=\frac{\pi}{3}\)
\(\theta=60^{\circ}\)

\(\begin{aligned} &\text{The vertical velocity component}\ v_y=v \sin 60=\frac{\sqrt{3}}{2} V \\ & h=\frac{u_y^2}{2 g}=\frac{\frac{3}{4} v^2}{2 g} \\ & h=\frac{\frac{3}{4} \times \frac{4}{9} \pi}{2 g} \\ & h=\frac{3 \pi}{9 \times 2 g}=\frac{\pi}{6 g} \end{aligned}\)
Total maximum height from the plane, \(H=\frac{R}{2}+h\)
Substituting \(h = \frac{\pi}{6g}\), where \(g = 10 \, \text{m/s}^2\)
\(\begin{aligned} & H=\frac{1}{2}+\frac{\pi}{6 \times 10} \\ & x=\frac{\pi}{6} ; x=0.52 \end{aligned}\)
So, the answer is 0.52
A tube of length 1m is filled completely with an ideal liquid of mass 2M, and closed at both ends. The tube is rotated uniformly in horizontal plane about one of its ends. If the force exerted by the liquid at the other end is \( F \) and the angular velocity of the tube is \( \omega \), then the value of \( \alpha \) is ______ in SI units.
A force of 49 N acts tangentially at the highest point of a sphere (solid) of mass 20 kg, kept on a rough horizontal plane. If the sphere rolls without slipping, then the acceleration of the center of the sphere is
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.
The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a rigid body.
Other examples: