
Given,
At t=0, the angular velocity \(\omega\) of the disk is 0
\(t=0, \omega=0\)
at \(t=\sqrt{\pi}, \omega=\alpha t=\frac{2}{3} \sqrt{\pi}\),
The linear velocity v of a point on the disk is given by \(v = \omega r\).
Substituting the given values we find, \(v=\omega r=\frac{2}{3} \sqrt{\pi}\)
Using the formula for angular displacement, \(\theta=\frac{1}{2} \alpha t^2\)
\(\theta=\frac{1}{2} \times \frac{2}{3} \times \pi=\frac{\pi}{3}\)
\(\theta=60^{\circ}\)

\(\begin{aligned} &\text{The vertical velocity component}\ v_y=v \sin 60=\frac{\sqrt{3}}{2} V \\ & h=\frac{u_y^2}{2 g}=\frac{\frac{3}{4} v^2}{2 g} \\ & h=\frac{\frac{3}{4} \times \frac{4}{9} \pi}{2 g} \\ & h=\frac{3 \pi}{9 \times 2 g}=\frac{\pi}{6 g} \end{aligned}\)
Total maximum height from the plane, \(H=\frac{R}{2}+h\)
Substituting \(h = \frac{\pi}{6g}\), where \(g = 10 \, \text{m/s}^2\)
\(\begin{aligned} & H=\frac{1}{2}+\frac{\pi}{6 \times 10} \\ & x=\frac{\pi}{6} ; x=0.52 \end{aligned}\)
So, the answer is 0.52
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.
The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a rigid body.
Other examples: