To solve the problem of finding the moment of inertia of a ring formed from a rod, we start with understanding the distribution of mass and geometry:
Thus, the moment of inertia of the ring about any of its diameters is \(\frac{\lambda L^3}{8\pi^2}\), which corresponds to the correct answer.
For a rod of length \( L \) and linear mass density \( \lambda \),
the total mass \( m \) of the rod is: \( m = \lambda L \)
When the rod is bent into a ring of radius \( R \), the mass is uniformly distributed along the circumference of the ring.
The moment of inertia of the ring about any of its diameters is given by the formula for a ring: \( I = \frac{1}{2} m R^2 \)
Substituting
\( m = \lambda L \) into this expression: \( I = \frac{1}{2} \lambda L R^2 \)
We know that the circumference of the ring is \( 2\pi R \), and the length of the rod is equal to the circumference of the ring, so: \( L = 2\pi R \)
Thus, the radius \( R \) can be written as: \( R = \frac{L}{2\pi} \)
Substituting this into the equation for the moment of inertia: \( I = \frac{1}{2} \lambda L \left( \frac{L}{2\pi} \right)^2 = \frac{1}{2} \lambda L \times \frac{L^2}{4\pi^2} \)
Simplifying:
\( I = \frac{\lambda L^3}{8\pi^2} \)
Thus, the moment of inertia of the ring about any of its diameters is \( \frac{\lambda L^3}{8\pi^2} \).
Therefore, the correct answer is Option (1).
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Two point charges 2q and q are placed at vertex A and centre of face CDEF of the cube as shown in figure. The electric flux passing through the cube is : 
Suppose there is a uniform circular disc of mass M kg and radius r m shown in figure. The shaded regions are cut out from the disc. The moment of inertia of the remainder about the axis A of the disc is given by $\frac{x{256} Mr^2$. The value of x is ___.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 