A force of 49 N acts tangentially at the highest point of a sphere (solid) of mass 20 kg, kept on a rough horizontal plane. If the sphere rolls without slipping, then the acceleration of the center of the sphere is
Torque about bottom point: \( F \times 2r = I\alpha \)
\( 49 \times 2r = \frac{7}{5}mr^2\alpha \) \( 14 - 4r\alpha \)
As sphere rolls without slipping \( a = r\alpha \) \( a = \frac{14}{4} = \frac{7}{2} = 3.5 m/s^2 \)