A force of 49 N acts tangentially at the highest point of a sphere (solid) of mass 20 kg, kept on a rough horizontal plane. If the sphere rolls without slipping, then the acceleration of the center of the sphere is
Torque about bottom point: \( F \times 2r = I\alpha \)
\( 49 \times 2r = \frac{7}{5}mr^2\alpha \) \( 14 - 4r\alpha \)
As sphere rolls without slipping \( a = r\alpha \) \( a = \frac{14}{4} = \frac{7}{2} = 3.5 m/s^2 \)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: