Use the formula for the angle of minimum deviation.
For a prism, the relation between the angle of minimum deviation \( D \), the angle of the prism \( A \), and the refractive index \( \mu \) is given by:
\[
\mu = \frac{\sin\left( \frac{A + D}{2} \right)}{\sin\left( \frac{A}{2} \right)}
\]
Substituting the values \( A = 60^\circ \) and \( \mu = 2 \), we get:
\[
2 = \frac{\sin\left( \frac{60^\circ + D}{2} \right)}{\sin\left( 30^\circ \right)}
\]
Using \( \sin(30^\circ) = \frac{1}{2} \),
\[
2 = \frac{\sin\left( \frac{60^\circ + D}{2} \right)}{\frac{1}{2}} \quad \Rightarrow \quad \sin\left( \frac{60^\circ + D}{2} \right) = 1
\]
Thus,
\[
\frac{60^\circ + D}{2} = 90^\circ \quad \Rightarrow \quad 60^\circ + D = 180^\circ \quad \Rightarrow \quad D = 120^\circ
\]