To determine \( K_p \) for the given reaction at 300 K, we use the relationship between \( K_c \) and \( K_p \): \[ K_p = K_c (RT)^{\Delta n} \] Given: - \( K_c = 100 \, \text{mol L}^{-1} \)
- Temperature, \( T = 300 \, \text{K} \)
- Gas constant, \( R = 0.082 \, \text{L atm mol}^{-1} \text{K}^{-1} \)
- Change in the number of moles of gas, \( \Delta n \)
Step 1: Determine \( \Delta n \) For the reaction: \[ \text{A}_2 \text{B}_2(g) \rightleftharpoons \text{A}_2(g) + \text{B}_2(g) \]
- Reactants: 1 mole of \( \text{A}_2 \text{B}_2 \)
- Products: 1 mole of \( \text{A}_2 \) + 1 mole of \( \text{B}_2 \) \[ \Delta n = (1 + 1) - 1 = 1 \]
Step 2: Calculate \( K_p \) Using the formula: \[ K_p = K_c (RT)^{\Delta n} \] Substitute the values: \[ K_p = 100 \times (0.082 \times 300)^1 \] \[ K_p = 100 \times 24.6 \] \[ K_p = 2460 \, \text{atm} \] Final Answer: \[ \boxed{2460} \] This corresponds to option (2).
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]
The mass of particle X is four times the mass of particle Y. The velocity of particle Y is four times the velocity of X. The ratio of de Broglie wavelengths of X and Y is: