To determine \( K_p \) for the given reaction at 300 K, we use the relationship between \( K_c \) and \( K_p \): \[ K_p = K_c (RT)^{\Delta n} \] Given: - \( K_c = 100 \, \text{mol L}^{-1} \)
- Temperature, \( T = 300 \, \text{K} \)
- Gas constant, \( R = 0.082 \, \text{L atm mol}^{-1} \text{K}^{-1} \)
- Change in the number of moles of gas, \( \Delta n \)
Step 1: Determine \( \Delta n \) For the reaction: \[ \text{A}_2 \text{B}_2(g) \rightleftharpoons \text{A}_2(g) + \text{B}_2(g) \]
- Reactants: 1 mole of \( \text{A}_2 \text{B}_2 \)
- Products: 1 mole of \( \text{A}_2 \) + 1 mole of \( \text{B}_2 \) \[ \Delta n = (1 + 1) - 1 = 1 \]
Step 2: Calculate \( K_p \) Using the formula: \[ K_p = K_c (RT)^{\Delta n} \] Substitute the values: \[ K_p = 100 \times (0.082 \times 300)^1 \] \[ K_p = 100 \times 24.6 \] \[ K_p = 2460 \, \text{atm} \] Final Answer: \[ \boxed{2460} \] This corresponds to option (2).
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]
For the reaction A(g) $\rightleftharpoons$ 2B(g), the backward reaction rate constant is higher than the forward reaction rate constant by a factor of 2500, at 1000 K.
[Given: R = 0.0831 atm $mol^{–1} K^{–1}$]
$K_p$ for the reaction at 1000 K is:
Consider the following gas phase dissociation, PCl$_5$(g) $\rightleftharpoons$ PCl$_3$(g) + Cl$_2$(g) with equilibrium constant K$_p$ at a particular temperature and at pressure P. The degree of dissociation ($\alpha$) for PCl$_5$(g) is
PCl$_5$(g) $\rightleftharpoons$ PCl$_3$(g) + Cl$_2$(g)
Choose the incorrect statement related to life cycles:
I. Sporophyte generation is represented by a single-celled zygote.
II. Gametophyte is multicellular in Pteridophytes and Gymnosperms.
III. Life cycle is diphlaplontic in Bryophytes.
IV. Life cycle is haplodiplontic in Pteridophytes.