Given:
Step 1: Establish the Change in Moles
Let \( x \) be the moles of \(\mathrm{N_2}\) that react. According to the stoichiometry: \[ \begin{array}{lcc} & \mathrm{N_2} & + 3\mathrm{H_2} \rightleftharpoons 2\mathrm{NH_3} \\ \text{Initial (moles):} & 1 & 3 \quad 0 \\ \text{Change (moles):} & -x & -3x \quad +2x \\ \text{Equilibrium (moles):} & 1-x & 3-3x \quad 2x \\ \end{array} \]
Step 2: Solve for \( x \)
Given that at equilibrium, 0.4 moles of \(\mathrm{NH_3}\) are present: \[ 2x = 0.4 \implies x = 0.2 \text{ moles} \]
Step 3: Calculate Equilibrium Moles of \(\mathrm{H_2}\)
Substitute \( x = 0.2 \) into the equilibrium expression for \(\mathrm{H_2}\): \[ \text{Moles of } \mathrm{H_2} = 3 - 3x = 3 - 3(0.2) = 3 - 0.6 = 2.4 \text{ moles} \]
Step 4: Verification
Conclusion
The equilibrium concentration of \(\mathrm{H_2}\) is \(\boxed{2.4 \text{ moles}}\).
Final Answer
Based on standard equilibrium calculations, the correct equilibrium concentration of \(\mathrm{H_2}\) is: \[ \boxed{2.4 \text{ moles}} \]