The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]
Step 1: Write the equilibrium expression For the reaction:
H2O(g) → H2(g) + ½ O2(g)
The equilibrium constant Kp is given by:
Kp = (PH2 • PO21/2) / PH2O
Step 2: Express partial pressures in terms of α
Let initial moles of H2O = 1
At equilibrium:
Moles of H2O = 1 - α
Moles of H2 = α
Moles of O2 = α/2
Total moles = 1 + α/2 ≈ 1 (since α ≪ 1)
Partial pressures (total pressure = 1 bar):
PH2O = (1 - α) ≈ 1
PH2 = α
PO2 = α/2
Step 3: Substitute into Kp expression
8.0 • 10-3 = (α • (α/2)1/2) / 1
8.0 • 10-3 = α3/2 / √2
Step 4: Solve for α
α3/2 = 8.0 • 10-3 • √2 = 1.131 • 10-2
α = (1.131 • 10-2)2/3 = 0.049 ≈ 0.05
Expressed as • 10-2:
α = 5 • 10-2
At a given temperature and pressure, the equilibrium constant values for the equilibria are given below:
$ 3A_2 + B_2 \rightleftharpoons 2A_3B, \, K_1 $
$ A_3B \rightleftharpoons \frac{3}{2}A_2 + \frac{1}{2}B_2, \, K_2 $
The relation between $ K_1 $ and $ K_2 $ is:
If equilibrium constant for the equation $ A_2 + B_2 \rightleftharpoons 2AB \quad \text{is} \, K_p, $ then find the equilibrium constant for the equation $ AB \rightleftharpoons \frac{1}{2} A_2 + \frac{1}{2} B_2. $