To solve the problem, we need to find the equilibrium concentration of $\mathrm{NH}_3$ for the reaction:
$\mathrm{N_2} + 3\mathrm{H_2} \rightleftharpoons 2 \mathrm{NH_3}$
with equilibrium constant $K_c = 0.5$, initial moles 1 mole of $\mathrm{N_2}$ and 3 moles of $\mathrm{H_2}$ in 1 L container.
1. Setting up Initial Concentrations:
Since volume is 1 L, initial concentrations (in M) are:
$[\mathrm{N_2}]_0 = 1$ M
$[\mathrm{H_2}]_0 = 3$ M
$[\mathrm{NH_3}]_0 = 0$ M
2. Change in Concentrations at Equilibrium:
Let $x$ be the change in concentration of $\mathrm{N_2}$ that reacts to form $\mathrm{NH_3}$:
$[\mathrm{N_2}] = 1 - x$
$[\mathrm{H_2}] = 3 - 3x$ (since 3 moles of $\mathrm{H_2}$ react per mole of $\mathrm{N_2}$)
$[\mathrm{NH_3}] = 2x$ (2 moles of $\mathrm{NH_3}$ are formed per mole of $\mathrm{N_2}$ reacted)
3. Expression for Equilibrium Constant $K_c$:
$ K_c = \frac{[\mathrm{NH_3}]^2}{[\mathrm{N_2}][\mathrm{H_2}]^3} = 0.5 $
Substitute equilibrium concentrations:
$ 0.5 = \frac{(2x)^2}{(1 - x)(3 - 3x)^3} = \frac{4x^2}{(1 - x)(3(1 - x))^3} = \frac{4x^2}{(1 - x)(27(1 - x)^3)} = \frac{4x^2}{27 (1 - x)^4} $
4. Simplify the equation:
$0.5 = \frac{4x^2}{27 (1 - x)^4} \Rightarrow 0.5 \times 27 (1 - x)^4 = 4 x^2$
$13.5 (1 - x)^4 = 4 x^2$
5. Approximate the solution:
Try $x = 0.3$:
LHS: $13.5 (1 - 0.3)^4 = 13.5 \times (0.7)^4 = 13.5 \times 0.2401 = 3.24$
RHS: $4 \times (0.3)^2 = 4 \times 0.09 = 0.36$ (LHS > RHS, try higher $x$)
Try $x = 0.6$:
LHS: $13.5 (0.4)^4 = 13.5 \times 0.0256 = 0.3456$
RHS: $4 \times 0.36 = 1.44$ (RHS > LHS, try a value between 0.3 and 0.6)
Try $x = 0.5$:
LHS: $13.5 (0.5)^4 = 13.5 \times 0.0625 = 0.84375$
RHS: $4 \times 0.25 = 1.0$ (RHS > LHS)
Try $x = 0.4$:
LHS: $13.5 (0.6)^4 = 13.5 \times 0.1296 = 1.75$
RHS: $4 \times 0.16 = 0.64$ (LHS > RHS)
By trial, $x \approx 0.3$ is the closest approximate solution.
6. Calculate Equilibrium Concentration of $\mathrm{NH_3}$:
$[\mathrm{NH_3}] = 2x = 2 \times 0.3 = 0.6$ M
Final Answer:
The equilibrium concentration of $\mathrm{NH_3}$ is $ {0.6} $ M.