The correct answer is (D) : \(3\sqrt3 \times10^{-5}T\)
\(d\ \tan60°=2\sqrt3\)
d = 2cm
\(B=3\times\frac{\mu_0i}{2\pi d}\sin60°\)
\(=3\times\frac{2\times10^{-7}\times2}{2\times10^{-2}}\times\frac{\sqrt3}{2}\)
\(=3\sqrt3\times10^{-5}\)
Given below are two statements
Statement I: Biot-Savart's law gives on the expression for the magnetic field strength of an infinitesimal current element (Idl) of a current carrying conductor only.
Statement II: Biot-Savart’s law is analogous to Coulomb's inverse square law of charge q, with the former being related to the field produced by a scalar source, Idl while the latter being produced by a vector source, q.
In light of above statements choose the most appropriate answer from the options given below:
Moving charges generate an electric field and the rate of flow of charge is known as current. This is the basic concept in Electrostatics. Another important concept related to moving electric charges is the magnetic effect of current. Magnetism is caused by the current.
Region in space around a magnet where the Magnet has its Magnetic effect is called the Magnetic field of the Magnet. Let us suppose that there is a point charge q (moving with a velocity v and, located at r at a given time t) in presence of both the electric field E (r) and the magnetic field B (r). The force on an electric charge q due to both of them can be written as,
F = q [ E (r) + v × B (r)] ≡ EElectric +Fmagnetic
This force was based on the extensive experiments of Ampere and others. It is called the Lorentz force.