The magnetic field \( B \) at a point along the axis of a current-carrying loop is given by the formula:
\[
B = \frac{\mu_0 I R^2}{2 (R^2 + x^2)^{3/2}}
\]
Where:
- \( \mu_0 = 4 \pi \times 10^{-7} \, \text{T m/A} \) (permeability of free space),
- \( I = 4 \, \text{A} \) (current),
- \( R = 0.2 \, \text{m} \) (radius of the loop),
- \( x = 0.2 \, \text{m} \) (distance from the center along the axis).
Substituting the values:
\[
B = \frac{4 \pi \times 10^{-7} \times 4 \times (0.2)^2}{2 \left( (0.2)^2 + (0.2)^2 \right)^{3/2}}
\]
Simplifying:
\[
B = \frac{4 \pi \times 10^{-7} \times 4 \times 0.04}{2 \left( 0.08 \right)^{3/2}}
\]
\[
B = \frac{4 \pi \times 10^{-7} \times 0.16}{2 \times 0.022627}
\]
\[
B \approx \sqrt{2} \, \text{T}
\]
Thus, the magnetic field is \( \sqrt{2} \, \text{T} \).