Step 1. Calculate Quantum Number n: Use the energy formula for hydrogen:
\( E_n = -\frac{13.6}{n^2} = -0.85 \)
Solving, \( n = 4 \).
Step 2. Determine Number of Transitions: The number of transitions from \( n = 4 \) is:
\[ \text{No. of transitions} = \frac{n(n - 1)}{2} = \frac{4 \times (4 - 1)}{2} = 6 \]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: