The magnetic force is given by:
\[ \vec{F} = q (\vec{v} \times \vec{B}) \]
Substituting the values:
\[ 5e \hat{k} = e \left( 3\hat{i} + 5\hat{j} \right) \times \left( B_0 \hat{i} + 2B_0 \hat{j} \right) \]
Calculating the cross product:
\[ 5e \hat{k} = e \left( 6B_0 \hat{k} - 5B_0 \hat{k} \right) \]
Simplifying:
\[ 5e \hat{k} = e B_0 \hat{k} \]
Therefore:
\[ B_0 = 5T \]
A current-carrying coil is placed in an external uniform magnetic field. The coil is free to turn in the magnetic field. What is the net force acting on the coil? Obtain the orientation of the coil in stable equilibrium. Show that in this orientation the flux of the total field (field produced by the loop + external field) through the coil is maximum.
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.
Which of the following options is correct?
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: