The ratio of dopant atoms to silicon atoms is given as: \[ \frac{\text{Number of dopant atoms}}{\text{Number of silicon atoms}} = \frac{1}{5 \times 10^7} \]
The number density of silicon atoms is \( 5 \times 10^{28} \) atoms/m\(^3\). The number of dopant atoms per cubic metre is: \[ \text{Number of dopant atoms} = \frac{1}{5 \times 10^7} \times 5 \times 10^{28} = 10^{21} \, \text{dopant atoms/m}^3 \]
Since each dopant atom creates one hole in the semiconductor, the number of holes created per cubic metre is equal to the number of dopant atoms: \[ \text{Number of holes} = 10^{21} \, \text{holes/m}^3 \]
Since \( 1 \, \text{m}^3 = 10^6 \, \text{cm}^3 \), the number of holes per cubic centimetre is: \[ \text{Number of holes} = \frac{10^{21}}{10^6} = 10^{15} \, \text{holes/cm}^3 \]
One example of a dopant used in p-type silicon is **boron (B)**. Boron atoms have one fewer valence electron than silicon, creating a hole in the crystal lattice when substituted for a silicon atom.
The number of holes created per cubic centimetre in the specimen due to doping is \( \boxed{10^{15}} \, \text{holes/cm}^3 \).
Two long parallel wires X and Y, separated by a distance of 6 cm, carry currents of 5 A and 4 A, respectively, in opposite directions as shown in the figure. Magnitude of the resultant magnetic field at point P at a distance of 4 cm from wire Y is \( 3 \times 10^{-5} \) T. The value of \( x \), which represents the distance of point P from wire X, is ______ cm. (Take permeability of free space as \( \mu_0 = 4\pi \times 10^{-7} \) SI units.) 
A particle of charge $ q $, mass $ m $, and kinetic energy $ E $ enters in a magnetic field perpendicular to its velocity and undergoes a circular arc of radius $ r $. Which of the following curves represents the variation of $ r $ with $ E $?
Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A : If oxygen ion (O\(^{-2}\)) and Hydrogen ion (H\(^{+}\)) enter normal to the magnetic field with equal momentum, then the path of O\(^{-2}\) ion has a smaller curvature than that of H\(^{+}\).
Reason R : A proton with same linear momentum as an electron will form a path of smaller radius of curvature on entering a uniform magnetic field perpendicularly.
In the light of the above statements, choose the correct answer from the options given below