We need to find the magnetic field produced at the nucleus of a hydrogen atom due to the electron's motion, using the Biot-Savart law.
Solution
1. Biot-Savart Law for a Circular Orbit:
The magnetic field at the center of the orbit is given by:
\( B = \frac{\mu_0}{4\pi} \frac{qv}{r^2} \)
where:
2. Substitute the Given Values:
\( B = \frac{4\pi \times 10^{-7}}{4\pi} \times \frac{1.6 \times 10^{-19} \times 6.76 \times 10^6}{(0.52 \times 10^{-10})^2} \)
\( B = 10^{-7} \times \frac{1.6 \times 6.76 \times 10^{-13}}{(0.52)^2 \times 10^{-20}} \)
3. Calculate the Magnetic Field:
\( B = 10^{-7} \times \frac{10.816 \times 10^{-13}}{0.2704 \times 10^{-20}} \)
\( B = \frac{10.816}{0.2704} \times 10^{-7} \times 10^{-13} \times 10^{20} \)
\( B = 40 \times 10^{-7} \times 10^{7} \)
\( B = 40 \, \text{T} \)
Final Answer
Thus, the magnetic field produced at the nucleus of the hydrogen atom is \( 40 \, \text{T} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: