We need to find the magnetic field produced at the nucleus of a hydrogen atom due to the electron's motion, using the Biot-Savart law.
Solution
1. Biot-Savart Law for a Circular Orbit:
The magnetic field at the center of the orbit is given by:
\( B = \frac{\mu_0}{4\pi} \frac{qv}{r^2} \)
where:
2. Substitute the Given Values:
\( B = \frac{4\pi \times 10^{-7}}{4\pi} \times \frac{1.6 \times 10^{-19} \times 6.76 \times 10^6}{(0.52 \times 10^{-10})^2} \)
\( B = 10^{-7} \times \frac{1.6 \times 6.76 \times 10^{-13}}{(0.52)^2 \times 10^{-20}} \)
3. Calculate the Magnetic Field:
\( B = 10^{-7} \times \frac{10.816 \times 10^{-13}}{0.2704 \times 10^{-20}} \)
\( B = \frac{10.816}{0.2704} \times 10^{-7} \times 10^{-13} \times 10^{20} \)
\( B = 40 \times 10^{-7} \times 10^{7} \)
\( B = 40 \, \text{T} \)
Final Answer
Thus, the magnetic field produced at the nucleus of the hydrogen atom is \( 40 \, \text{T} \).

Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to: