Step 1: Recall the Energy Density Formula
The energy per unit volume \( u \) is given by: \[ u = \frac{1}{2} \cdot \text{stress} \cdot \text{strain} \] We also know: \[ \text{stress} = Y \cdot \text{strain} \]
Step 2: Substitute the Values
Given: \[ Y = 7.0 \times 10^{10} \, \text{N/m}^2, \quad \text{strain} = \frac{0.04}{100} = 0.0004 \] Substitute these values into the formula: \[ u = \frac{1}{2} \cdot Y \cdot (\text{strain})^2 \] \[ u = \frac{1}{2} \cdot 7.0 \times 10^{10} \cdot (0.0004)^2 \] \[ u = 5600 \, \text{J/m}^3 \]
Final Answer
The energy per unit volume is: \[ u = 5600 \, \text{J/m}^3 \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.