Step 1: Recall the Energy Density Formula
The energy per unit volume \( u \) is given by: \[ u = \frac{1}{2} \cdot \text{stress} \cdot \text{strain} \] We also know: \[ \text{stress} = Y \cdot \text{strain} \]
Step 2: Substitute the Values
Given: \[ Y = 7.0 \times 10^{10} \, \text{N/m}^2, \quad \text{strain} = \frac{0.04}{100} = 0.0004 \] Substitute these values into the formula: \[ u = \frac{1}{2} \cdot Y \cdot (\text{strain})^2 \] \[ u = \frac{1}{2} \cdot 7.0 \times 10^{10} \cdot (0.0004)^2 \] \[ u = 5600 \, \text{J/m}^3 \]
Final Answer
The energy per unit volume is: \[ u = 5600 \, \text{J/m}^3 \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: