Step 1: Recall the Energy Density Formula
The energy per unit volume \( u \) is given by: \[ u = \frac{1}{2} \cdot \text{stress} \cdot \text{strain} \] We also know: \[ \text{stress} = Y \cdot \text{strain} \]
Step 2: Substitute the Values
Given: \[ Y = 7.0 \times 10^{10} \, \text{N/m}^2, \quad \text{strain} = \frac{0.04}{100} = 0.0004 \] Substitute these values into the formula: \[ u = \frac{1}{2} \cdot Y \cdot (\text{strain})^2 \] \[ u = \frac{1}{2} \cdot 7.0 \times 10^{10} \cdot (0.0004)^2 \] \[ u = 5600 \, \text{J/m}^3 \]
Final Answer
The energy per unit volume is: \[ u = 5600 \, \text{J/m}^3 \]
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}