2Al + 3H2SO4 → Al2(SO4)3 + 3H2
Mole of Al taken = \(\frac{5.4 }{ 27}\) = 0.2
Mole of H2SO4 taken = \(\frac{{50 \times 5}}{{1000}} = 0.25\)
As \(\frac{0.2}{2} > \frac{0.25}{3}, \text{H}_2\text{SO}_4\) is limiting reagent
Now, moles of H2 formed = \(\frac{3}{3} \times 0.25 = 0.25\)
Therefore Volume =\(0.25 \times 0.082 \times \frac{300}{1} = \frac{24.6}{4} = 6.15 \, \text{L}\)
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?