Question:

All values of \( (8i)^{\frac{1}{3}} \) are:

Show Hint

For complex roots, express the number in polar form and use De Moivre’s theorem.
Updated On: Mar 25, 2025
  • \( \pm (\sqrt{3} + i), -2i \)
  • \( \pm \sqrt{3} + i, -2i \)
  • \( \pm (\sqrt{3} - i), 2i \)
  • \( \pm (2 + i), i \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Convert to Polar Form Expressing \( 8i \) in polar form: \[ 8i = 8 \text{cis} \frac{\pi}{2} \]
Step 2: Using De Moivre’s Theorem The cube roots are given by: \[ z_k = 8^{\frac{1}{3}} \text{cis} \left( \frac{\frac{\pi}{2} + 2k\pi}{3} \right), \quad k = 0,1,2 \] Calculating values, we get: \[ \boxed{\pm (\sqrt{3} + i), -2i} \]
Was this answer helpful?
0
0