The motion of a particle in the XY plane is given by \( x(t) = 25 + 6t^2 \, \text{m} \); \( y(t) = -50 - 20t + 8t^2 \, \text{m} \). The magnitude of the initial velocity of the particle, \( v_0 \), is given by:
Consider a rope fixed at both ends under tension so that it is horizontal (i.e. assume the rope is along x-axis, with gravity acting along z-axis). Now the right end is continually oscillated at high frequency n (say n=100 Hz) horizontally and in a direction along the rope; amplitude of oscillation is negligible. The oscillation travells along the rope and is reflected at the left end.
Let the total length of rope be l, total mass be m and the acceleration due to gravity be g.
After initial phase (say a mintue or so), the rope has __(BLANK-1)__ wave, which is __(BLANK-2)__ in nature. It results from superposition of left travelling and right travelling __(BLANK-3)__ waves. This resulting wave has a frequency __ (BLANK-4)_ that of oscillation frequency nu. Simple dimensional analysis indicates that the frequency of can be of the form: ___(BLANK-5)__ .
Match List-I with List-II: List-I
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
Kinetic energy of an object is the measure of the work it does as a result of its motion. Kinetic energy is the type of energy that an object or particle has as a result of its movement. When an object is subjected to a net force, it accelerates and gains kinetic energy as a result. Kinetic energy is a property of a moving object or particle defined by both its mass and its velocity. Any combination of motions is possible, including translation (moving along a route from one spot to another), rotation around an axis, vibration, and any combination of motions.