By Hooke's law, we have the relation for the elongation of a wire due to force:
\( \gamma = \frac{F}{A} = \frac{\Delta L}{L} \)
where \( A \) is the cross-sectional area and \( L \) is the length of the wire. The elongation is directly proportional to \( F \) and \( L \), and inversely proportional to the area. The change in length is given by:
\( \Delta L = \frac{F L}{A} = \frac{F L}{\pi r^2} \)
For the second wire, we can write:
\( \frac{\Delta L_2}{\Delta L_1} = \frac{F_2 L_2}{F_1 L_1} \times \frac{A_1}{A_2} \)
Given that \( L_2 = 2L \), \( r_2 = 2r \), and \( F_2 = 2F \), we have:
\( \frac{\Delta L_2}{\Delta L_1} = \frac{2F \times 2L}{F \times L} \times \frac{\pi r^2}{\pi (2r)^2} \)
\( \frac{\Delta L_2}{\Delta L_1} = \frac{4F L}{F L} \times \frac{1}{4} = 1 \)
Thus, the elongation of the second wire is equal to that of the first wire.
Therefore, the ratio \(\frac{\Delta L_2}{\Delta L_1}\) is 1.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: