For a balanced Wheatstone bridge in a meter bridge setup:
\[ \frac{4.5}{R} = \frac{60}{40} \]
Solving for \(R\):
\[ R = \frac{4.5 \times 40}{60} = 3 \, \Omega \]
Now, using the formula for resistance:
\[ R = \frac{\rho \ell}{A} = \frac{\rho \ell}{\pi r^2} \]
where \(\ell = 10 \, \text{cm} = 0.1 \, \text{m}\) and \(r = \sqrt{7} \times 10^{-4} \, \text{m}\).
Substitute values:
\[ 3 = \frac{\rho \times 0.1}{\pi (\sqrt{7} \times 10^{-4})^2} \]
\[ \rho = 66 \times 10^{-7} \, \Omega \, \text{m} \]
Thus, \(R = 66\).
Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
Current passing through a wire as function of time is given as $I(t)=0.02 \mathrm{t}+0.01 \mathrm{~A}$. The charge that will flow through the wire from $t=1 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$ is: