For a balanced Wheatstone bridge in a meter bridge setup:
\[ \frac{4.5}{R} = \frac{60}{40} \]
Solving for \(R\):
\[ R = \frac{4.5 \times 40}{60} = 3 \, \Omega \]
Now, using the formula for resistance:
\[ R = \frac{\rho \ell}{A} = \frac{\rho \ell}{\pi r^2} \]
where \(\ell = 10 \, \text{cm} = 0.1 \, \text{m}\) and \(r = \sqrt{7} \times 10^{-4} \, \text{m}\).
Substitute values:
\[ 3 = \frac{\rho \times 0.1}{\pi (\sqrt{7} \times 10^{-4})^2} \]
\[ \rho = 66 \times 10^{-7} \, \Omega \, \text{m} \]
Thus, \(R = 66\).
A battery of emf \( E \) and internal resistance \( r \) is connected to a rheostat. When a current of 2A is drawn from the battery, the potential difference across the rheostat is 5V. The potential difference becomes 4V when a current of 4A is drawn from the battery. Calculate the value of \( E \) and \( r \).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: