A uniform electric field, E=-400\(\sqrt3\vec{Y}\)YNC-1 is applied in a region. A charged particle of mass m carrying positive charge q is projected in this region with an initial speed of 2√10 × 106 ms−1. This particle is aimed to hit a target T, which is 5 m away from its entry point into the field schematically in the figure. Take \(\frac{q}{m}\) = 1010 ckg-1.

the particle will hit T if projected at an angle of 45º from the horizontal
the particle will hit T if projected either at an angle of 30º or 60º from the horizontal
time taken by the particle to hit T could be \(\frac{5}{6}\) μs as well as \(\frac{5}{2}\) μs
time taken by the particle to hit T is \(\frac{5}{3}\) μs

The range 𝑅 is given by \(R = \frac{2u \sin \theta}{g_{\text{eff}}} \times u \cos \theta = 5 \, \text{m}\)
We find \(\sin(2\theta) = \frac{qER}{\mu^2} = \frac{\sqrt{3}}{2}\)
So, \(\theta = 30^\circ\)
Therefore, for the same range, the angle of projection could be either \(30^∘\) or \(60^∘\).
Thus, Option (B) is correct.
The time of flight 𝑇 is given by \(T = \frac{2u \sin \theta}{g_{\text{eff}}}\)
\(=\left(\sqrt{\frac{10}{3}} \times 10^{-6}\right) \sin \theta\)
\(T_1 \text{ at } \theta = 30^\circ \text{ is } \frac{\sqrt{5}}{6}\mu s\)
\(T_2 \text{ at } \theta = 60^\circ \text{ is } \frac{\sqrt{5}}{2}\mu s\)
So, Option (C) is also correct.
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):

As shown below, bob A of a pendulum having massless string of length \( R \) is released from \( 60^\circ \) to the vertical. It hits another bob B of half the mass that is at rest on a frictionless table in the center. Assuming elastic collision, the magnitude of the velocity of bob A after the collision will be (take \( g \) as acceleration due to gravity):


A particle of mass \( m \) and charge \( q \) is fastened to one end \( A \) of a massless string having equilibrium length \( l \), whose other end is fixed at point \( O \). The whole system is placed on a frictionless horizontal plane and is initially at rest. If a uniform electric field is switched on along the direction as shown in the figure, then the speed of the particle when it crosses the x-axis is:
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.