The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):

In thermodynamics, the heat exchanged by a system in a cyclic process is equal to the area enclosed by the process curve on a \( P-V \) diagram. In the given problem, the process involves a rectangle on the \( P-V \) diagram (since the pressure-volume graph forms a closed loop between points A, B, and C). The area of this rectangle can be calculated as: \[ \text{Area} = \text{Length} \times \text{Width} = (400 - 200) \times (200 - 100) = 200 \times 100 = 10\pi \text{ (in appropriate units)}. \] Therefore, the magnitude of heat exchanged is \( 10\pi \) units.
Final Answer: \( 10\pi \).
As shown below, bob A of a pendulum having massless string of length \( R \) is released from \( 60^\circ \) to the vertical. It hits another bob B of half the mass that is at rest on a frictionless table in the center. Assuming elastic collision, the magnitude of the velocity of bob A after the collision will be (take \( g \) as acceleration due to gravity):


A particle of mass \( m \) and charge \( q \) is fastened to one end \( A \) of a massless string having equilibrium length \( l \), whose other end is fixed at point \( O \). The whole system is placed on a frictionless horizontal plane and is initially at rest. If a uniform electric field is switched on along the direction as shown in the figure, then the speed of the particle when it crosses the x-axis is:
A solution of aluminium chloride is electrolyzed for 30 minutes using a current of 2A. The amount of the aluminium deposited at the cathode is _________
If \( z \) is a complex number and \( k \in \mathbb{R} \), such that \( |z| = 1 \), \[ \frac{2 + k^2 z}{k + \overline{z}} = kz, \] then the maximum distance from \( k + i k^2 \) to the circle \( |z - (1 + 2i)| = 1 \) is: