The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
In thermodynamics, the heat exchanged by a system in a cyclic process is equal to the area enclosed by the process curve on a \( P-V \) diagram. In the given problem, the process involves a rectangle on the \( P-V \) diagram (since the pressure-volume graph forms a closed loop between points A, B, and C). The area of this rectangle can be calculated as: \[ \text{Area} = \text{Length} \times \text{Width} = (400 - 200) \times (200 - 100) = 200 \times 100 = 10\pi \text{ (in appropriate units)}. \] Therefore, the magnitude of heat exchanged is \( 10\pi \) units.
Final Answer: \( 10\pi \).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: