The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
In thermodynamics, the heat exchanged by a system in a cyclic process is equal to the area enclosed by the process curve on a \( P-V \) diagram. In the given problem, the process involves a rectangle on the \( P-V \) diagram (since the pressure-volume graph forms a closed loop between points A, B, and C). The area of this rectangle can be calculated as: \[ \text{Area} = \text{Length} \times \text{Width} = (400 - 200) \times (200 - 100) = 200 \times 100 = 10\pi \text{ (in appropriate units)}. \] Therefore, the magnitude of heat exchanged is \( 10\pi \) units.
Final Answer: \( 10\pi \).
Two point charges +q and −q are held at (a, 0) and (−a, 0) in x-y plane. Obtain an expression for the net electric field due to the charges at a point (0, y). Hence, find electric field at a far off point (y ≫ a).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: