A particle of mass \( m \) and charge \( q \) is fastened to one end \( A \) of a massless string having equilibrium length \( l \), whose other end is fixed at point \( O \). The whole system is placed on a frictionless horizontal plane and is initially at rest. If a uniform electric field is switched on along the direction as shown in the figure, then the speed of the particle when it crosses the x-axis is:
\[ F_{\text{electric}} = qE \]
\[ W = F_{\text{electric}} \times l = qEl \]
\[ K = \frac{1}{2} m v^2 \]
\[ qEl = \frac{1}{2} m v^2 \]
\[ v = \sqrt{\frac{2qEl}{m}} \]
As shown below, bob A of a pendulum having massless string of length \( R \) is released from \( 60^\circ \) to the vertical. It hits another bob B of half the mass that is at rest on a frictionless table in the center. Assuming elastic collision, the magnitude of the velocity of bob A after the collision will be (take \( g \) as acceleration due to gravity):

The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):


The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):

Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
An organic compound (X) with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ is not readily oxidised. On reduction it gives $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\mathrm{Y})\right.$ which reacts with HBr to give a bromide (Z) which is converted to Grignard reagent. This Grignard reagent on reaction with (X) followed by hydrolysis give 2,3-dimethylbutan-2-ol. Compounds (X), (Y) and (Z) respectively are: