Step 1: Convert initial and final angular speeds from rpm to rad/s.
- Initial speed, \(\omega_0 = 1800 \, \text{rpm} = \frac{1800 \times 2\pi}{60} = 60\pi \, \text{rad/s}\).
- Final speed, \(\omega = 2100 \, \text{rpm} = \frac{2100 \times 2\pi}{60} = 70\pi \, \text{rad/s}\).
Step 2: Calculate angular acceleration (\(\alpha\)) using torque and moment of inertia.
- Torque, \(\tau = 25\pi \, \text{Nm}\).
- Moment of inertia for a thin disk rotating about its diameter: \( I = \frac{1}{4}MR^2 = \frac{1}{4} \times 1 \times R^2 = \frac{R^2}{4}\).
- Angular acceleration: \( \tau = I\alpha \quad \Rightarrow \quad 25\pi = \frac{R^2}{4} \alpha \quad \Rightarrow \quad \alpha = \frac{100\pi}{R^2}\).
Step 3: Relate angular acceleration to the change in angular velocity.
\( \omega = \omega_0 + \alpha t \quad \Rightarrow \quad 70\pi = 60\pi + \left(\frac{100\pi}{R^2}\right) \times 40\).
Simplify: \( 10\pi = \frac{4000\pi}{R^2} \quad \Rightarrow \quad R^2 = 400 \quad \Rightarrow \quad R = 20 \, \text{m}\).
- Diameter, \(D = 2R = 40 \, \text{m}\).
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: