The given equation is:
\( \tau \, dt = I \Delta w \)
Substitute the given values:
\( 25\pi \times 40 = I(300) \times \frac{2\pi}{60} \)
Simplify to find \( I \):
\( I = \frac{25 \times 60 \times 40}{300 \times 2} = 100 = \frac{M R^2}{4} \)
Now, solving for \( R^2 \):
\( R^2 = 400 \)
Thus, the value of \( R \) is:
\( R = 20 \, \text{m} \)
And the distance \( D \) is:
\( D = 40 \, \text{m} \)
Step 1: Convert initial and final angular speeds from rpm to rad/s.
- Initial speed, \(\omega_0 = 1800 \, \text{rpm} = \frac{1800 \times 2\pi}{60} = 60\pi \, \text{rad/s}\).
- Final speed, \(\omega = 2100 \, \text{rpm} = \frac{2100 \times 2\pi}{60} = 70\pi \, \text{rad/s}\).
Step 2: Calculate angular acceleration (\(\alpha\)) using torque and moment of inertia.
- Torque, \(\tau = 25\pi \, \text{Nm}\).
- Moment of inertia for a thin disk rotating about its diameter: \( I = \frac{1}{4}MR^2 = \frac{1}{4} \times 1 \times R^2 = \frac{R^2}{4}\).
- Angular acceleration: \( \tau = I\alpha \quad \Rightarrow \quad 25\pi = \frac{R^2}{4} \alpha \quad \Rightarrow \quad \alpha = \frac{100\pi}{R^2}\).
Step 3: Relate angular acceleration to the change in angular velocity.
\( \omega = \omega_0 + \alpha t \quad \Rightarrow \quad 70\pi = 60\pi + \left(\frac{100\pi}{R^2}\right) \times 40\).
Simplify: \( 10\pi = \frac{4000\pi}{R^2} \quad \Rightarrow \quad R^2 = 400 \quad \Rightarrow \quad R = 20 \, \text{m}\).
- Diameter, \(D = 2R = 40 \, \text{m}\).
A tube of length 1m is filled completely with an ideal liquid of mass 2M, and closed at both ends. The tube is rotated uniformly in horizontal plane about one of its ends. If the force exerted by the liquid at the other end is \( F \) and the angular velocity of the tube is \( \omega \), then the value of \( \alpha \) is ______ in SI units.
Which of the following are correct expression for torque acting on a body?
A. $\ddot{\tau}=\ddot{\mathrm{r}} \times \ddot{\mathrm{L}}$
B. $\ddot{\tau}=\frac{\mathrm{d}}{\mathrm{dt}}(\ddot{\mathrm{r}} \times \ddot{\mathrm{p}})$
C. $\ddot{\tau}=\ddot{\mathrm{r}} \times \frac{\mathrm{d} \dot{\mathrm{p}}}{\mathrm{dt}}$
D. $\ddot{\tau}=\mathrm{I} \dot{\alpha}$
E. $\ddot{\tau}=\ddot{\mathrm{r}} \times \ddot{\mathrm{F}}$
( $\ddot{r}=$ position vector; $\dot{\mathrm{p}}=$ linear momentum; $\ddot{\mathrm{L}}=$ angular momentum; $\ddot{\alpha}=$ angular acceleration; $\mathrm{I}=$ moment of inertia; $\ddot{\mathrm{F}}=$ force; $\mathrm{t}=$ time $)$
Choose the correct answer from the options given below:
Consider the sound wave travelling in ideal gases of $\mathrm{He}, \mathrm{CH}_{4}$, and $\mathrm{CO}_{2}$. All the gases have the same ratio $\frac{\mathrm{P}}{\rho}$, where P is the pressure and $\rho$ is the density. The ratio of the speed of sound through the gases $\mathrm{v}_{\mathrm{He}}: \mathrm{v}_{\mathrm{CH}_{4}}: \mathrm{v}_{\mathrm{CO}_{2}}$ is given by