$I_{max} = (\sqrt{I_1} + \sqrt{I_2})^2$
$I_{max} = (\sqrt{4I} + \sqrt{9I})^2$
$I_{max} = (2\sqrt{I} + 3\sqrt{I})^2$
$I_{max} = (5\sqrt{I})^2 = 25I$
$I_{min} = (\sqrt{I_1} - \sqrt{I_2})^2$
$I_{min} = (\sqrt{4I} - \sqrt{9I})^2$
$I_{min} = (2\sqrt{I} - 3\sqrt{I})^2$
$I_{min} = (-\sqrt{I})^2 = I$
$I_{max} - I_{min} = 24I$
$x = 24$
Calculate the angle of minimum deviation of an equilateral prism. The refractive index of the prism is \(\sqrt{3}\). Calculate the angle of incidence for this case of minimum deviation also.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: