Using the law of conservation of angular momentum:
\[I_1\omega = I_2\omega_2.\]
The moment of inertia of the first disc:
\[I_1 = \frac{MR^2}{2}.\]
The combined moment of inertia of both discs:
\[I_2 = \frac{MR^2}{2} + \frac{1}{2} \left(\frac{MR^2}{2}\right) = \frac{3MR^2}{4}.\]
Applying conservation of angular momentum:
\[\frac{MR^2}{2} \times \omega = \frac{3MR^2}{4} \times \omega_2.\]
Simplifying:
\[\omega_2 = \frac{\frac{MR^2}{2}}{\frac{3MR^2}{4}} \times \omega = \frac{2}{3} \times \omega.\]
Thus, the new angular velocity of the system is:
\[\omega_2 = \frac{2}{3} \omega.\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: