Using the law of conservation of angular momentum:
\[I_1\omega = I_2\omega_2.\]
The moment of inertia of the first disc:
\[I_1 = \frac{MR^2}{2}.\]
The combined moment of inertia of both discs:
\[I_2 = \frac{MR^2}{2} + \frac{1}{2} \left(\frac{MR^2}{2}\right) = \frac{3MR^2}{4}.\]
Applying conservation of angular momentum:
\[\frac{MR^2}{2} \times \omega = \frac{3MR^2}{4} \times \omega_2.\]
Simplifying:
\[\omega_2 = \frac{\frac{MR^2}{2}}{\frac{3MR^2}{4}} \times \omega = \frac{2}{3} \times \omega.\]
Thus, the new angular velocity of the system is:
\[\omega_2 = \frac{2}{3} \omega.\]
A uniform circular disc of radius \( R \) and mass \( M \) is rotating about an axis perpendicular to its plane and passing through its center. A small circular part of radius \( R/2 \) is removed from the original disc as shown in the figure. Find the moment of inertia of the remaining part of the original disc about the axis as given above.