Step 1: Kinetic Energy in Rolling Motion
The total kinetic energy \( K \) of a rolling object is the sum of translational and rotational kinetic energies:
\[
K = K_{\text{translational}} + K_{\text{rotational}}
\]
\[
K = \frac{1}{2} m v^2 + \frac{1}{2} I \omega^2
\]
Since \( v = r \omega \), we substitute \( \omega \).
Step 2: Comparing a Disc and a Ring
For a solid disc:
\[
I_{\text{disc}} = \frac{1}{2} m r^2
\]
\[
K_{\text{disc}} = \frac{1}{2} m v^2 + \frac{1}{2} \times \frac{1}{2} m r^2 \times \frac{v^2}{r^2}
\]
\[
= \frac{1}{2} m v^2 + \frac{1}{4} m v^2
\]
\[
= \frac{3}{4} m v^2
\]
Given \( K_{\text{disc}} = 6 \) J,
\[
\frac{3}{4} m v^2 = 6
\]
For a thin ring:
\[
I_{\text{ring}} = m r^2
\]
\[
K_{\text{ring}} = \frac{1}{2} m v^2 + \frac{1}{2} m r^2 \times \frac{v^2}{r^2}
\]
\[
= \frac{1}{2} m v^2 + \frac{1}{2} m v^2
\]
\[
= m v^2
\]
Using \( \frac{3}{4} m v^2 = 6 \), solving for \( m v^2 \),
\[
m v^2 = \frac{4}{3} \times 6 = 8
\]
\[
K_{\text{ring}} = \frac{2}{3} \times 6 = 4 \text{ J}
\]
Conclusion
Thus, the correct answer is:
\[
4 \text{ J}
\]