By impulse β momentum theorem: \( J = M V_{CM} \)
Therefore, the center of mass velocity \( V_{CM} \) is: \[ V_{CM} = \frac{J}{M} = \frac{\frac{\pi}{2}}{100 \times \frac{5}{1000}} = \sqrt{2\pi} \]
The total time of the journey is: \[ \Delta t = \frac{\sqrt{2\pi}}{5} \]
By the angular impulse-momentum theorem: \[ J \times \frac{R}{2} = \left[\frac{M R^2}{4}\right] w \]
Solving for the angular velocity \( w \): \[ w = \frac{J \times \frac{R}{2}}{\frac{M R^2}{4}} = \frac{J}{M R} \times 2 \]
Substituting the known values: \[ w = \frac{\frac{\frac{\sqrt{\pi}}{2}}{100} \times 2}{\frac{5}{1000} \times \frac{4}{3} \times \frac{1}{100}} = 2 \times 75 \sqrt{2\pi} \, \text{rad/s} \]
The number of rotations is: \[ n = \frac{w \times \Delta t}{2\pi} = 30 \]
Therefore, the final result is: \[ n = 30 \]
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.
The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a rigid body.
Other examples: