Question:

A straight line through point \(P\) of a triangle \(PQR\) intersects the side \(QR\) at the point \(S\) and the circumcircle of the triangle \(PQR\) at the point \(T\). If \(S\) is not the centre of the circumcircle, then which of the following is true?

Show Hint

When secant-tangent relations appear in geometry problems, always combine them with AM–GM or HM–GM inequalities to establish bounds on reciprocal sums.
Updated On: Aug 23, 2025
  • \(\dfrac{1}{PS} + \dfrac{1}{ST}<\dfrac{2}{\sqrt{(QS)(QR)}}\)
  • \(\dfrac{1}{PS} + \dfrac{1}{ST}<\dfrac{4}{QR}\)
  • \(\dfrac{1}{PS} + \dfrac{1}{ST}>\dfrac{1}{(QS)(QR)}\)
  • \(\dfrac{1}{PS} + \dfrac{1}{ST}>\dfrac{4}{QR}\)
  • None of the above
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Use Secant Property.
From point \(P\), the secant property gives: \[ PS \cdot ST = QS \cdot SR \quad \text{(1)} \]

Step 2: Harmonic Mean vs Geometric Mean.
For two positive numbers \(PS\) and \(ST\), we know: \[ \frac{2}{\frac{1}{PS} + \frac{1}{ST}}<\sqrt{PS \cdot ST} \] which implies \[ \frac{1}{PS} + \frac{1}{ST}>\frac{2}{\sqrt{PS \cdot ST}} \]

Step 3: Replace \(PS \cdot ST\).
Using equation (1): \[ PS \cdot ST = QS \cdot SR \] So, \[ \frac{1}{PS} + \frac{1}{ST}>\frac{2}{\sqrt{QS \cdot SR}} \quad \text{(2)} \]

Step 4: Apply AM ≥ GM for \(QS\) and \(SR\).
We know that: \[ \sqrt{QS \cdot SR} \leq \frac{QS + SR}{2} \] But \(QS + SR = QR\). So, \[ \sqrt{QS \cdot SR} \leq \frac{QR}{2} \]

Step 5: Use inequality.
From (2): \[ \frac{1}{PS} + \frac{1}{ST}>\frac{2}{\sqrt{QS \cdot SR}} \] and since \(\sqrt{QS \cdot SR} \leq \frac{QR}{2}\), \[ \frac{2}{\sqrt{QS \cdot SR}} \geq \frac{2}{QR/2} = \frac{4}{QR} \]

Step 6: Final conclusion.
Thus, \[ \frac{1}{PS} + \frac{1}{ST}>\frac{4}{QR} \] \[ \boxed{\dfrac{1}{PS} + \dfrac{1}{ST}>\dfrac{4}{QR}} \]
Was this answer helpful?
0
0

Questions Asked in XAT exam

View More Questions