Young's modulus (\( Y \)) is defined as the ratio of stress to strain:
\( Y = \frac{\text{stress}}{\text{strain}} \)
Stress is defined as force (\( F \)) per unit area (\( A \)), and strain is the change in length (\( \Delta L \)) divided by the original length (\( L \)).
We are given \( F = 62.8 \text{ kN} = 62.8 \times 10^3 \text{ N} \), \( r = 20 \text{ mm} = 20 \times 10^{-3} \text{ m} \), \( L = 2.0 \text{ m} \), and \( Y = 2.0 \times 10^{11} \text{ N/m}^2 \). The cross-sectional area of the rod is
\( A = \pi r^2 = \pi (20 \times 10^{-3} \text{ m})^2 = 400\pi \times 10^{-6} \text{ m}^2 \)
Strain is given by:
\( \text{strain} = \frac{\text{stress}}{Y} = \frac{F/A}{Y} = \frac{F}{AY} \)
\( \text{strain} = \frac{62.8 \times 10^3 \text{ N}}{(400\pi \times 10^{-6} \text{ m}^2)(2.0 \times 10^{11} \text{ N/m}^2)} = \frac{62.8 \times 10^3}{800\pi \times 10^5} = \frac{62.8}{800 \times 3.14} \times 10^{-2} \)
\( \text{strain} \approx \frac{62.8}{2512} \times 10^{-2} \approx 0.025 \times 10^{-2} = 25 \times 10^{-5} \)
The longitudinal strain produced in the wire is \( \mathbf{25 \times 10^{-5}} \).
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}