Young's modulus (\( Y \)) is defined as the ratio of stress to strain:
\( Y = \frac{\text{stress}}{\text{strain}} \)
Stress is defined as force (\( F \)) per unit area (\( A \)), and strain is the change in length (\( \Delta L \)) divided by the original length (\( L \)).
We are given \( F = 62.8 \text{ kN} = 62.8 \times 10^3 \text{ N} \), \( r = 20 \text{ mm} = 20 \times 10^{-3} \text{ m} \), \( L = 2.0 \text{ m} \), and \( Y = 2.0 \times 10^{11} \text{ N/m}^2 \). The cross-sectional area of the rod is
\( A = \pi r^2 = \pi (20 \times 10^{-3} \text{ m})^2 = 400\pi \times 10^{-6} \text{ m}^2 \)
Strain is given by:
\( \text{strain} = \frac{\text{stress}}{Y} = \frac{F/A}{Y} = \frac{F}{AY} \)
\( \text{strain} = \frac{62.8 \times 10^3 \text{ N}}{(400\pi \times 10^{-6} \text{ m}^2)(2.0 \times 10^{11} \text{ N/m}^2)} = \frac{62.8 \times 10^3}{800\pi \times 10^5} = \frac{62.8}{800 \times 3.14} \times 10^{-2} \)
\( \text{strain} \approx \frac{62.8}{2512} \times 10^{-2} \approx 0.025 \times 10^{-2} = 25 \times 10^{-5} \)
The longitudinal strain produced in the wire is \( \mathbf{25 \times 10^{-5}} \).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.