Young's modulus (\( Y \)) is defined as the ratio of stress to strain:
\( Y = \frac{\text{stress}}{\text{strain}} \)
Stress is defined as force (\( F \)) per unit area (\( A \)), and strain is the change in length (\( \Delta L \)) divided by the original length (\( L \)).
We are given \( F = 62.8 \text{ kN} = 62.8 \times 10^3 \text{ N} \), \( r = 20 \text{ mm} = 20 \times 10^{-3} \text{ m} \), \( L = 2.0 \text{ m} \), and \( Y = 2.0 \times 10^{11} \text{ N/m}^2 \). The cross-sectional area of the rod is
\( A = \pi r^2 = \pi (20 \times 10^{-3} \text{ m})^2 = 400\pi \times 10^{-6} \text{ m}^2 \)
Strain is given by:
\( \text{strain} = \frac{\text{stress}}{Y} = \frac{F/A}{Y} = \frac{F}{AY} \)
\( \text{strain} = \frac{62.8 \times 10^3 \text{ N}}{(400\pi \times 10^{-6} \text{ m}^2)(2.0 \times 10^{11} \text{ N/m}^2)} = \frac{62.8 \times 10^3}{800\pi \times 10^5} = \frac{62.8}{800 \times 3.14} \times 10^{-2} \)
\( \text{strain} \approx \frac{62.8}{2512} \times 10^{-2} \approx 0.025 \times 10^{-2} = 25 \times 10^{-5} \)
The longitudinal strain produced in the wire is \( \mathbf{25 \times 10^{-5}} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: