The forces acting on the ball as it moves through glycerine include the gravitational force (\(mg\)) and the viscous drag force (\(F_v\)). The motion is described by:
\[ mg - F_v - F_b = ma \]
Where:
\[ F_b = \left( \frac{4}{3} \pi r^3 \right) g (\rho_L), \quad F_v = 6 \pi \eta r v \]
Equating forces and simplifying:
\[ \left( \frac{4}{3} \pi r^3 \right) g (\rho - \rho_L) = m \frac{dv}{dt} \]
Let:
\[ K_1 = \frac{4}{3} \pi r^3 (\rho - \rho_L) g, \quad K_2 = \frac{6 \pi \eta r}{m} \]
The differential equation becomes:
\[ \frac{dv}{dt} = K_1 - K_2 v \]
Integrating:
\[ \int_0^v \frac{dv}{K_1 - K_2 v} = \int_0^t dt \]
Solution yields:
\[ v = \frac{K_1}{K_2} \left( 1 - e^{-K_2 t} \right) \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: