The forces acting on the ball as it moves through glycerine include the gravitational force (\(mg\)) and the viscous drag force (\(F_v\)). The motion is described by:
\[ mg - F_v - F_b = ma \]
Where:
\[ F_b = \left( \frac{4}{3} \pi r^3 \right) g (\rho_L), \quad F_v = 6 \pi \eta r v \]
Equating forces and simplifying:
\[ \left( \frac{4}{3} \pi r^3 \right) g (\rho - \rho_L) = m \frac{dv}{dt} \]
Let:
\[ K_1 = \frac{4}{3} \pi r^3 (\rho - \rho_L) g, \quad K_2 = \frac{6 \pi \eta r}{m} \]
The differential equation becomes:
\[ \frac{dv}{dt} = K_1 - K_2 v \]
Integrating:
\[ \int_0^v \frac{dv}{K_1 - K_2 v} = \int_0^t dt \]
Solution yields:
\[ v = \frac{K_1}{K_2} \left( 1 - e^{-K_2 t} \right) \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: