To solve this question, let's first understand the basic concept of Young's modulus and how it is affected by changes in the dimensions of a wire.
Concept: Young's modulus is a measure of the ability of a material to withstand changes in length when under lengthwise tension or compression. It is defined by the formula:
\(Y = \frac{FL}{A \Delta L}\)
where:
Analysis:
The question provides that Young’s modulus of a material is \(Y\) for a wire of original length \(L\) and cross-sectional area \(A\). If the length of the wire is doubled (\(2L\)) and the cross-sectional area is halved (\(\frac{A}{2}\)), we need to determine how Young's modulus will change.
Since Young's modulus is a property of the material itself and is only dependent on the material properties (not on its dimensions), changing the dimensions of the wire will not affect Young's modulus. Young’s modulus remains constant for a given material under small deformations.
Conclusion:
Thus, even after doubling the length and halving the cross-sectional area of the wire, Young’s modulus remains \(Y\). Therefore, the correct answer is: \(Y\)
The reading of pressure metre attached with a closed pipe is \( 4.5 \times 10^4 \, N/m^2 \). On opening the valve, water starts flowing and the reading of pressure metre falls to \( 2.0 \times 10^4 \, N/m^2 \). The velocity of water is found to be \( \sqrt{V} \, m/s \). The value of \( V \) is _____.

For the circuit shown above, the equivalent gate is:
Find the equivalent resistance between two ends of the following circuit:
The circuit consists of three resistors, two of \(\frac{r}{3}\) in series connected in parallel with another resistor of \(r\).
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process.
In the light of the above statements, choose the correct answer from the options given below:
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process. \text{In the light of the above statements, choose the correct answer from the options given below:}
