\(ΔQ_{rej} = 50 × 540 + 50 × 1 × (100 – 20)\)
\(ΔQ_{rej} = 50 × [540 + 80]\)
\(ΔQ_{rej} = 50 × 620\)
\(ΔQ_{rej}= 31000\ cal\)
\(ΔQ_{rej} = 31 × 10^3\ cal\)
So, the answer is \(31\).
Match List-I with List-II.
| List-I | List-II |
| (A) Heat capacity of body | (I) \( J\,kg^{-1} \) |
| (B) Specific heat capacity of body | (II) \( J\,K^{-1} \) |
| (C) Latent heat | (III) \( J\,kg^{-1}K^{-1} \) |
| (D) Thermal conductivity | (IV) \( J\,m^{-1}K^{-1}s^{-1} \) |

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In thermodynamics, work is a way of energy transfer from a system to surroundings, under the influence of external factors such gravity, electromagnetic forces, pressure/volume etc.
Energy (ΔU) can cross the boundary of a system in two forms -> Work (W) and Heat (q). Both work and heat refer to processes by which energy is transferred to or from a substance.
ΔU=W+q
Work done by a system is defined as the quantity of energy exchanged between a system and its surroundings. It is governed by external factors such as an external force, pressure or volume or change in temperature etc.
Work (W) in mechanics is displacement (d) against a resisting force (F).
Work has units of energy (Joule, J)