For \( r > R \), the electric field outside the shell is:
\[ E_0 = \frac{\sigma \cdot 4\pi R^2}{4\pi \epsilon_0 r^2} \]
The torque on the dipole is:
\[ \tau = \mathbf{p} \times \mathbf{E} = p_0 E \sin\theta \]
At \( r = 2R \):
\[ \frac{2\sigma p_0}{\epsilon_0 I} \]
At \( r = 25 \):
\[ \frac{\sigma p_0}{100 \epsilon_0 I} \]
\[ I \alpha = p_0 E \sin\theta \quad \Rightarrow \quad \alpha \approx \frac{p_0 E}{I} \]
Substituting:
The angular frequency is:
\[ \alpha = \frac{p_0 \cdot \sigma \cdot 4\pi R^2}{4\pi \epsilon_0 I r^2} \cdot \theta \] \[ \omega = \frac{p_0 R^2}{\epsilon_0 I r^3} \]
For \( r = 2R \), \( \omega \) does not match the given options. For \( r = 10R \), we get:
\[ \omega = \dots \]
Thus, Options (2) and (4) are correct.
In the given figure of logic gates, if the inputs are \( A = 1 \) and \( B = 0 \) then the values of \( y_1, y_2, \) and \( y_3 \) respectively are: